

Exercise 1: The neo-Hookean model predicts that the internal pressure p_i in a balloon is given by,

$$p_i(\lambda) = 4C_{10} \frac{e_i}{R} \frac{1}{\lambda} \left(1 - \frac{1}{\lambda^6} \right)$$

Here C_{10} is a constant, $\lambda = r / R$ is the stretch ratio and e_i, R are the initial thickness and radius of the balloon. Find the stretch ratio corresponding to maximum pressure in the balloon.

Exercise 2: A general constitutive relation in non-linear elasticity (for incompressible materials) proposed by Ogden, is,

$$\phi(\lambda_1, \lambda_2, \lambda_3) = \sum_{i=1}^N \frac{\mu_i}{\alpha_i} (\lambda_1^{\alpha_i} + \lambda_2^{\alpha_i} + \lambda_3^{\alpha_i} - 3) \quad (a)$$

where α_i, μ_i are parameters of the model and N is the number of terms considered in the function. It is chosen according to the experimental data. Show that this model,

- (1) reduces to Neo-Hookean model when, $N = 1$, $\alpha_1 = 2$, $\mu_1 / 2 = C_{10}$ and
- (2) reduces Mooney-Rivlin model when

$$N = 2, \quad \alpha_1 = 2, \quad \alpha_2 = -2, \quad \mu_1 / 2 = C_{10}, \quad -\mu_2 / 2 = C_{01}.$$